Depth Information Guided Crowd Counting for complex crowd scenes
نویسندگان
چکیده
منابع مشابه
Depth Information Guided Crowd Counting for Complex Crowd Scenes
It is important to monitor and analyze crowd events for the sake of city safety. In an EDOF (extended depth of field) image with a crowded scene, the distribution of people is highly imbalanced. People far away from the camera look much smaller and often occlude each other heavily, while people close to the camera look larger. In such a case, it is difficult to accurately estimate the number of...
متن کاملMining Paths of Complex Crowd Scenes
The Ambient Intelligence (AmI) paradigm requires a robust interpretation of people actions and behaviour and a way for automatically generating persistent spatial-temporal models of recurring events. This paper describes a relatively inexpensive technique that does not require the use of conventional trackers to identify the main paths of highly cluttered scenes, approximating them with spline ...
متن کاملFully Convolutional Crowd Counting on Highly Congested Scenes
In this paper we advance the state-of-the-art for crowd counting in high density scenes by further exploring the idea of a fully convolutional crowd counting model introduced by (Zhang et al., 2016). Producing an accurate and robust crowd count estimator using computer vision techniques has attracted significant research interest in recent years. Applications for crowd counting systems exist in...
متن کاملUnsupervised Crowd Counting
Most crowd counting methods rely on training with labeled data to learn a mapping between image features and the number of people in the scene. However, the nature of this mapping may change as a function of the scene, camera parameters, illumination etc., limiting the ability of such supervised systems to generalize to novel conditions. Here we propose an alternative, unsupervised strategy. Th...
متن کاملCounting with the Crowd
In this paper, we address the problem of selectivity estimation in a crowdsourced database. Specifically, we develop several techniques for using workers on a crowdsourcing platform like Amazon’s Mechanical Turk to estimate the fraction of items in a dataset (e.g., a collection of photos) that satisfy some property or predicate (e.g., photos of trees). We do this without explicitly iterating th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2019
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2019.02.026